3.2.4 \(\int \frac {x^2}{(a+b x+c x^2)^{3/2} (d-f x^2)} \, dx\) [104]

3.2.4.1 Optimal result
3.2.4.2 Mathematica [C] (verified)
3.2.4.3 Rubi [A] (verified)
3.2.4.4 Maple [B] (verified)
3.2.4.5 Fricas [B] (verification not implemented)
3.2.4.6 Sympy [F(-1)]
3.2.4.7 Maxima [F(-2)]
3.2.4.8 Giac [F(-2)]
3.2.4.9 Mupad [F(-1)]

3.2.4.1 Optimal result

Integrand size = 28, antiderivative size = 297 \[ \int \frac {x^2}{\left (a+b x+c x^2\right )^{3/2} \left (d-f x^2\right )} \, dx=\frac {2 \left (a b (c d-a f)+c \left (b^2 d-2 a (c d+a f)\right ) x\right )}{\left (b^2-4 a c\right ) \left (b^2 d f-(c d+a f)^2\right ) \sqrt {a+b x+c x^2}}+\frac {\sqrt {d} \text {arctanh}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \left (c d-b \sqrt {d} \sqrt {f}+a f\right )^{3/2}}+\frac {\sqrt {d} \text {arctanh}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \left (c d+b \sqrt {d} \sqrt {f}+a f\right )^{3/2}} \]

output
1/2*arctanh(1/2*(b*d^(1/2)-2*a*f^(1/2)+x*(2*c*d^(1/2)-b*f^(1/2)))/(c*x^2+b 
*x+a)^(1/2)/(c*d+a*f-b*d^(1/2)*f^(1/2))^(1/2))*d^(1/2)/(c*d+a*f-b*d^(1/2)* 
f^(1/2))^(3/2)+1/2*arctanh(1/2*(b*d^(1/2)+2*a*f^(1/2)+x*(2*c*d^(1/2)+b*f^( 
1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f+b*d^(1/2)*f^(1/2))^(1/2))*d^(1/2)/(c*d 
+a*f+b*d^(1/2)*f^(1/2))^(3/2)+2*(a*b*(-a*f+c*d)+c*(b^2*d-2*a*(a*f+c*d))*x) 
/(-4*a*c+b^2)/(b^2*d*f-(a*f+c*d)^2)/(c*x^2+b*x+a)^(1/2)
 
3.2.4.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.68 (sec) , antiderivative size = 371, normalized size of antiderivative = 1.25 \[ \int \frac {x^2}{\left (a+b x+c x^2\right )^{3/2} \left (d-f x^2\right )} \, dx=\frac {4 b^2 c d x+4 a c d (b-2 c x)-4 a^2 f (b+2 c x)+\left (b^2-4 a c\right ) d \sqrt {a+x (b+c x)} \text {RootSum}\left [b^2 d-a^2 f-4 b \sqrt {c} d \text {$\#$1}+4 c d \text {$\#$1}^2+2 a f \text {$\#$1}^2-f \text {$\#$1}^4\&,\frac {b c d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )+2 a b f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-2 c^{3/2} d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-2 a \sqrt {c} f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-b f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{b \sqrt {c} d-2 c d \text {$\#$1}-a f \text {$\#$1}+f \text {$\#$1}^3}\&\right ]}{2 \left (b^2-4 a c\right ) \left (-c^2 d^2-2 a c d f+f \left (b^2 d-a^2 f\right )\right ) \sqrt {a+x (b+c x)}} \]

input
Integrate[x^2/((a + b*x + c*x^2)^(3/2)*(d - f*x^2)),x]
 
output
(4*b^2*c*d*x + 4*a*c*d*(b - 2*c*x) - 4*a^2*f*(b + 2*c*x) + (b^2 - 4*a*c)*d 
*Sqrt[a + x*(b + c*x)]*RootSum[b^2*d - a^2*f - 4*b*Sqrt[c]*d*#1 + 4*c*d*#1 
^2 + 2*a*f*#1^2 - f*#1^4 & , (b*c*d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^ 
2] - #1] + 2*a*b*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 2*c^(3 
/2)*d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 - 2*a*Sqrt[c]*f*Lo 
g[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 - b*f*Log[-(Sqrt[c]*x) + S 
qrt[a + b*x + c*x^2] - #1]*#1^2)/(b*Sqrt[c]*d - 2*c*d*#1 - a*f*#1 + f*#1^3 
) & ])/(2*(b^2 - 4*a*c)*(-(c^2*d^2) - 2*a*c*d*f + f*(b^2*d - a^2*f))*Sqrt[ 
a + x*(b + c*x)])
 
3.2.4.3 Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 354, normalized size of antiderivative = 1.19, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {2137, 27, 1366, 25, 27, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\left (d-f x^2\right ) \left (a+b x+c x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 2137

\(\displaystyle \frac {2 \int -\frac {\left (b^2-4 a c\right ) d (c d+a f-b f x)}{2 \sqrt {c x^2+b x+a} \left (d-f x^2\right )}dx}{\left (b^2-4 a c\right ) \left (b^2 d f-(a f+c d)^2\right )}+\frac {2 \left (c x \left (b^2 d-2 a (a f+c d)\right )+a b (c d-a f)\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left (b^2 d f-(a f+c d)^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (c x \left (b^2 d-2 a (a f+c d)\right )+a b (c d-a f)\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left (b^2 d f-(a f+c d)^2\right )}-\frac {d \int \frac {c d+a f-b f x}{\sqrt {c x^2+b x+a} \left (d-f x^2\right )}dx}{b^2 d f-(a f+c d)^2}\)

\(\Big \downarrow \) 1366

\(\displaystyle \frac {2 \left (c x \left (b^2 d-2 a (a f+c d)\right )+a b (c d-a f)\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left (b^2 d f-(a f+c d)^2\right )}-\frac {d \left (-\frac {1}{2} \sqrt {f} \left (b \sqrt {f}-\frac {a f+c d}{\sqrt {d}}\right ) \int \frac {1}{\sqrt {f} \left (\sqrt {d}-\sqrt {f} x\right ) \sqrt {c x^2+b x+a}}dx-\frac {1}{2} \sqrt {f} \left (\frac {a f+c d}{\sqrt {d}}+b \sqrt {f}\right ) \int -\frac {1}{\sqrt {f} \left (\sqrt {f} x+\sqrt {d}\right ) \sqrt {c x^2+b x+a}}dx\right )}{b^2 d f-(a f+c d)^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (c x \left (b^2 d-2 a (a f+c d)\right )+a b (c d-a f)\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left (b^2 d f-(a f+c d)^2\right )}-\frac {d \left (\frac {1}{2} \sqrt {f} \left (\frac {a f+c d}{\sqrt {d}}+b \sqrt {f}\right ) \int \frac {1}{\sqrt {f} \left (\sqrt {f} x+\sqrt {d}\right ) \sqrt {c x^2+b x+a}}dx-\frac {1}{2} \sqrt {f} \left (b \sqrt {f}-\frac {a f+c d}{\sqrt {d}}\right ) \int \frac {1}{\sqrt {f} \left (\sqrt {d}-\sqrt {f} x\right ) \sqrt {c x^2+b x+a}}dx\right )}{b^2 d f-(a f+c d)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (c x \left (b^2 d-2 a (a f+c d)\right )+a b (c d-a f)\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left (b^2 d f-(a f+c d)^2\right )}-\frac {d \left (\frac {1}{2} \left (\frac {a f+c d}{\sqrt {d}}+b \sqrt {f}\right ) \int \frac {1}{\left (\sqrt {f} x+\sqrt {d}\right ) \sqrt {c x^2+b x+a}}dx-\frac {1}{2} \left (b \sqrt {f}-\frac {a f+c d}{\sqrt {d}}\right ) \int \frac {1}{\left (\sqrt {d}-\sqrt {f} x\right ) \sqrt {c x^2+b x+a}}dx\right )}{b^2 d f-(a f+c d)^2}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {2 \left (c x \left (b^2 d-2 a (a f+c d)\right )+a b (c d-a f)\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left (b^2 d f-(a f+c d)^2\right )}-\frac {d \left (\left (b \sqrt {f}-\frac {a f+c d}{\sqrt {d}}\right ) \int \frac {1}{4 \left (\sqrt {d} \sqrt {f} b+c d+a f\right )-\frac {\left (2 \sqrt {f} a+\left (\sqrt {f} b+2 c \sqrt {d}\right ) x+b \sqrt {d}\right )^2}{c x^2+b x+a}}d\left (-\frac {2 \sqrt {f} a+\left (\sqrt {f} b+2 c \sqrt {d}\right ) x+b \sqrt {d}}{\sqrt {c x^2+b x+a}}\right )-\left (\frac {a f+c d}{\sqrt {d}}+b \sqrt {f}\right ) \int \frac {1}{4 \left (-\sqrt {d} \sqrt {f} b+c d+a f\right )-\frac {\left (-2 \sqrt {f} a+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x+b \sqrt {d}\right )^2}{c x^2+b x+a}}d\left (-\frac {-2 \sqrt {f} a+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x+b \sqrt {d}}{\sqrt {c x^2+b x+a}}\right )\right )}{b^2 d f-(a f+c d)^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 \left (c x \left (b^2 d-2 a (a f+c d)\right )+a b (c d-a f)\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left (b^2 d f-(a f+c d)^2\right )}-\frac {d \left (\frac {\left (\frac {a f+c d}{\sqrt {d}}+b \sqrt {f}\right ) \text {arctanh}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}-\frac {\left (b \sqrt {f}-\frac {a f+c d}{\sqrt {d}}\right ) \text {arctanh}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{b^2 d f-(a f+c d)^2}\)

input
Int[x^2/((a + b*x + c*x^2)^(3/2)*(d - f*x^2)),x]
 
output
(2*(a*b*(c*d - a*f) + c*(b^2*d - 2*a*(c*d + a*f))*x))/((b^2 - 4*a*c)*(b^2* 
d*f - (c*d + a*f)^2)*Sqrt[a + b*x + c*x^2]) - (d*(((b*Sqrt[f] + (c*d + a*f 
)/Sqrt[d])*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt[f] + (2*c*Sqrt[d] - b*Sqrt[f])*x) 
/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*Sqrt[c 
*d - b*Sqrt[d]*Sqrt[f] + a*f]) - ((b*Sqrt[f] - (c*d + a*f)/Sqrt[d])*ArcTan 
h[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*Sqrt[d] + b*Sqrt[f])*x)/(2*Sqrt[c*d + b* 
Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*Sqrt[c*d + b*Sqrt[d]*Sq 
rt[f] + a*f])))/(b^2*d*f - (c*d + a*f)^2)
 

3.2.4.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1366
Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + ( 
f_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[(-a)*c, 2]}, Simp[(h/2 + c*(g/(2*q 
)))   Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Simp[(h/2 - c*(g/( 
2*q)))   Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d 
, e, f, g, h}, x] && NeQ[e^2 - 4*d*f, 0] && PosQ[(-a)*c]
 

rule 2137
Int[(Px_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_ 
), x_Symbol] :> With[{A = Coeff[Px, x, 0], B = Coeff[Px, x, 1], C = Coeff[P 
x, x, 2]}, Simp[(a + b*x + c*x^2)^(p + 1)*((d + f*x^2)^(q + 1)/((b^2 - 4*a* 
c)*(b^2*d*f + (c*d - a*f)^2)*(p + 1)))*((A*c - a*C)*((-b)*(c*d + a*f)) + (A 
*b - a*B)*(2*c^2*d + b^2*f - c*(2*a*f)) + c*(A*(2*c^2*d + b^2*f - c*(2*a*f) 
) - B*(b*c*d + a*b*f) + C*(b^2*d - 2*a*(c*d - a*f)))*x), x] + Simp[1/((b^2 
- 4*a*c)*(b^2*d*f + (c*d - a*f)^2)*(p + 1))   Int[(a + b*x + c*x^2)^(p + 1) 
*(d + f*x^2)^q*Simp[(b*B - 2*A*c - 2*a*C)*((c*d - a*f)^2 - (b*d)*((-b)*f))* 
(p + 1) + (b^2*(C*d + A*f) - b*(B*c*d + a*B*f) + 2*(A*c*(c*d - a*f) - a*(c* 
C*d - a*C*f)))*(a*f*(p + 1) - c*d*(p + 2)) - (2*f*((A*c - a*C)*((-b)*(c*d + 
 a*f)) + (A*b - a*B)*(2*c^2*d + b^2*f - c*(2*a*f)))*(p + q + 2) - (b^2*(C*d 
 + A*f) - b*(B*c*d + a*B*f) + 2*(A*c*(c*d - a*f) - a*(c*C*d - a*C*f)))*(b*f 
*(p + 1)))*x - c*f*(b^2*(C*d + A*f) - b*(B*c*d + a*B*f) + 2*(A*c*(c*d - a*f 
) - a*(c*C*d - a*C*f)))*(2*p + 2*q + 5)*x^2, x], x], x]] /; FreeQ[{a, b, c, 
 d, f, q}, x] && PolyQ[Px, x, 2] && LtQ[p, -1] && NeQ[b^2*d*f + (c*d - a*f) 
^2, 0] &&  !( !IntegerQ[p] && ILtQ[q, -1]) &&  !IGtQ[q, 0]
 
3.2.4.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(945\) vs. \(2(239)=478\).

Time = 0.77 (sec) , antiderivative size = 946, normalized size of antiderivative = 3.19

method result size
default \(-\frac {2 \left (2 c x +b \right )}{f \left (4 a c -b^{2}\right ) \sqrt {c \,x^{2}+b x +a}}+\frac {d \left (\frac {f}{\left (-b \sqrt {d f}+f a +c d \right ) \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}-\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (2 c \left (x +\frac {\sqrt {d f}}{f}\right )+\frac {-2 c \sqrt {d f}+b f}{f}\right )}{\left (-b \sqrt {d f}+f a +c d \right ) \left (\frac {4 c \left (-b \sqrt {d f}+f a +c d \right )}{f}-\frac {\left (-2 c \sqrt {d f}+b f \right )^{2}}{f^{2}}\right ) \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}-\frac {f \ln \left (\frac {\frac {-2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}{x +\frac {\sqrt {d f}}{f}}\right )}{\left (-b \sqrt {d f}+f a +c d \right ) \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}}\right )}{2 \sqrt {d f}\, f}-\frac {d \left (\frac {f}{\left (b \sqrt {d f}+f a +c d \right ) \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}-\frac {\left (2 c \sqrt {d f}+b f \right ) \left (2 c \left (x -\frac {\sqrt {d f}}{f}\right )+\frac {2 c \sqrt {d f}+b f}{f}\right )}{\left (b \sqrt {d f}+f a +c d \right ) \left (\frac {4 c \left (b \sqrt {d f}+f a +c d \right )}{f}-\frac {\left (2 c \sqrt {d f}+b f \right )^{2}}{f^{2}}\right ) \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}-\frac {f \ln \left (\frac {\frac {2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}{x -\frac {\sqrt {d f}}{f}}\right )}{\left (b \sqrt {d f}+f a +c d \right ) \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}}\right )}{2 \sqrt {d f}\, f}\) \(946\)

input
int(x^2/(c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x,method=_RETURNVERBOSE)
 
output
-2/f*(2*c*x+b)/(4*a*c-b^2)/(c*x^2+b*x+a)^(1/2)+1/2*d/(d*f)^(1/2)/f*(f/(-b* 
(d*f)^(1/2)+f*a+c*d)/((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+ 
(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)-(-2*c*(d*f)^(1/2)+b*f)/ 
(-b*(d*f)^(1/2)+f*a+c*d)*(2*c*(x+(d*f)^(1/2)/f)+1/f*(-2*c*(d*f)^(1/2)+b*f) 
)/(4*c/f*(-b*(d*f)^(1/2)+f*a+c*d)-1/f^2*(-2*c*(d*f)^(1/2)+b*f)^2)/((x+(d*f 
)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^ 
(1/2)+f*a+c*d))^(1/2)-f/(-b*(d*f)^(1/2)+f*a+c*d)/(1/f*(-b*(d*f)^(1/2)+f*a+ 
c*d))^(1/2)*ln((2/f*(-b*(d*f)^(1/2)+f*a+c*d)+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x 
+(d*f)^(1/2)/f)+2*(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)*((x+(d*f)^(1/2)/f)^ 
2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+f*a+c 
*d))^(1/2))/(x+(d*f)^(1/2)/f)))-1/2*d/(d*f)^(1/2)/f*(1/(b*(d*f)^(1/2)+f*a+ 
c*d)*f/((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b 
*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)-(2*c*(d*f)^(1/2)+b*f)/(b*(d*f)^(1/2)+f*a+c* 
d)*(2*c*(x-(d*f)^(1/2)/f)+(2*c*(d*f)^(1/2)+b*f)/f)/(4*c*(b*(d*f)^(1/2)+f*a 
+c*d)/f-(2*c*(d*f)^(1/2)+b*f)^2/f^2)/((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/ 
2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)-1/(b*(d*f)^(1 
/2)+f*a+c*d)*f/((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(1/2)+f*a+ 
c*d)/f+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+2*((b*(d*f)^(1/2)+f*a+c*d 
)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f 
)+(b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2))/(x-(d*f)^(1/2)/f)))
 
3.2.4.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 17285 vs. \(2 (239) = 478\).

Time = 13.62 (sec) , antiderivative size = 17285, normalized size of antiderivative = 58.20 \[ \int \frac {x^2}{\left (a+b x+c x^2\right )^{3/2} \left (d-f x^2\right )} \, dx=\text {Too large to display} \]

input
integrate(x^2/(c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x, algorithm="fricas")
 
output
Too large to include
 
3.2.4.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (a+b x+c x^2\right )^{3/2} \left (d-f x^2\right )} \, dx=\text {Timed out} \]

input
integrate(x**2/(c*x**2+b*x+a)**(3/2)/(-f*x**2+d),x)
 
output
Timed out
 
3.2.4.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x^2}{\left (a+b x+c x^2\right )^{3/2} \left (d-f x^2\right )} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x^2/(c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(((c*sqrt(4*d*f))/(2*f^2)>0)', se 
e `assume?
 
3.2.4.8 Giac [F(-2)]

Exception generated. \[ \int \frac {x^2}{\left (a+b x+c x^2\right )^{3/2} \left (d-f x^2\right )} \, dx=\text {Exception raised: TypeError} \]

input
integrate(x^2/(c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument ValueDone
 
3.2.4.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (a+b x+c x^2\right )^{3/2} \left (d-f x^2\right )} \, dx=\int \frac {x^2}{\left (d-f\,x^2\right )\,{\left (c\,x^2+b\,x+a\right )}^{3/2}} \,d x \]

input
int(x^2/((d - f*x^2)*(a + b*x + c*x^2)^(3/2)),x)
 
output
int(x^2/((d - f*x^2)*(a + b*x + c*x^2)^(3/2)), x)